Sea-level rise: Which is the role of glaciers and polar ice sheets?

Authors

DOI:

https://doi.org/10.7203/metode.11.16988

Keywords:

sea-level rise, glacier, ice-sheet, glacier mass balance, landed ice losses

Abstract

Sea-level has been rising at an accelerated rate during recent decades and is projected to continue increasing at an accelerated rate over the twenty-first century and beyond, mostly as a result of anthropogenic warming. A substantially raised sea level can have severe impacts on low-lying coastal areas, including coastal erosion and flooding of inhabited areas. Under continued climate warming, these impacts will be exacerbated by extreme meteorological events and extreme wave heights, posing severe risks to the human communities and coastal ecosystems. In this paper we review the recent advances on the contributions of glaciers and sheets to sea-level rise, in the light of the recently released IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.

Downloads

Download data is not yet available.

Author Biography

Francisco José Navarro, Universidad Politécnica de Madrid (Spain).

PhD in Physical Sciences (Geophysics) and Professor of Applied Mathematics at the Universidad Politécnica de Madrid (Spain), where he leads the Research Group on Numerical Simulation in Science and Engineering. His research focuses on glaciology, especially on the mass balance of glaciers, georadar applications in glaciology, numerical modelling of glacier dynamics, and remote sensing of glaciers. He is currently the president of the International Glaciological Society. 

References

Bamber, J. L., Westaway, R. M., Marzeion, B., & Wouters, B. (2018). The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6), 063008. https://doi.org/10.1088/1748-9326/aac2f0

Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017). A spatially resolved estimate of High-Mountain Asia glacier mass balances from 2000-2016. Nature Geoscience, 10, 668–673. https://doi.org/10.1038/NGEO2999

Cowton, T. R., Sole, A. J., Nienow, P. W., Slater, D. A., & Christoffersen, P. (2018). Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming. Proceedings of the National Academy of Sciences, 115(31), 7907–7912. https://doi.org/10.1073/pnas.1801769115

Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., Van Angelen, J. H., & Van den Broeke, M. R. (2014). An improved mass budget for the Greenland ice sheet. Geophysical Research Letters, 41(3), 866–872. https://doi.org/10.1002/2013GL059010

Forster, R. R., Box, J. E., van den Broeke, M. R., Miège, C., Burgess, E. W., van Angelen, J. H., Lenaerts, J. T. M., Koenig, L. S., Paden, J., Lewis, C., Gogineni, S. P., Leuschen, C., & McConnell, J. R. (2013). Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 7(2), 95–98. https://doi.org/10.1038/ngeo2043

Hanna, E., Pattyn, F., Navarro, F., Favier, V., Goelzer, H., van den Broeke, M. R., Vizcaino, M., Whitehouse, P. L., Ritz, C., Bulthuis, K., & Smith, B. (2020). Mass balance of the ice sheets and glaciers – Progress since AR5 and challenges. Earth-Science Reviews, 201, 102976. https://doi.org/10.1016/j.earscirev.2019.102976

Hock, R., Bliss, A., Marzeion, B., Giesen, R., Hirabayashi, Y., Huss, M., Radić, V., & Slangen, A. (2019). GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections. Journal of Glaciology, 65(251), 453–467. https://doi.org/10.1017/jog.2019.22

Hofer, S., Tedstone, A. J., Fettweis, X., & Bamber, J. L. (2017). Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Science Advances, 3(6), e1700584. https://doi.org/10.1126/sciadv.1700584

IPCC. (2019). IPCC special report on the ocean and cryosphere in a changing climate. H. – O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, … N. M. Weyer (Eds.). https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf

Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., Ha, H. K., & Stammerjohn, S. (2018). West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nature Geoscience, 11(10), 733–738. https://doi.org/10.1038/s41561-018-0207-4

Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., & Paul, F. (2017). Observation-based estimates of global glacier mass change and its contribution to sea-level change. Surveys in Geophysics, 38(1), 105–130. https://doi.org/10.1007/s10712-016-9394-y

Medley, B., & Thomas, E. R. (2018). Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nature Climate Change, 9(1), 34–39. https://doi.org/10.1038/s41558-018-0356-x

Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G., Favier, L., Fettweis, X., Goelzer, H., Golledge, N. R., Kuipers Munneke, P., Lenaerts, J. T. M., Nowicki, S., Payne, A. J., Robinson, A., Seroussi, H., Trusel, L. D., & van den Broeke, M. (2018). The Greenland and Antarctic ice sheets under 1.5 ℃ global warming. Nature Climate Change, 8(12), 1053–1061. https://doi.org/10.1038/s41558-018-0305-8

Reese, R., Gudmundsson, G. H., Levermann, A., & Winkelmann, R. (2018). The far reach of ice-shelf thinning in Antarctica. Nature Climate Change, 8(1), 53–57. https://doi.org/10.1038/s41558-017-0020-x

Rott, H., Abdel Jaber, W., Wuite, J., Scheiblauer, S., Floricioiu, D., van Wessem, J. M., Nagler, T., Miranda, N., & van den Broeke, M. R. (2018). Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016. The Cryosphere, 12, 1273–1291. https://doi.org/10.5194/tc-12-1273-2018

Steger, C. R., Reijmer, C. H., van den Broeke, M. R., Wever, N., Forster, R. R., Koenig, L. S., Kuipers Munneke, P., Lehning, M., Lhermitte, S., Ligtenberg, S. R. M., Miège, C., & Noël, B. P. Y. (2017). Firn meltwater retention on the Greenland Ice Sheet: A model comparison. Frontiers in Earth Science, 5, 3. https://doi.org/10.3389/feart.2017.00003

Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G., Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer, W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M., & Vieli, A. (2013). Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bulletin of the American Meteorological Society, 94(8), 1131–1144. https://doi.org/10.1175/BAMS-D-12-00100.1

Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., & Cogley, J. G. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382–386. https://doi.org/10.1038/s41586-019-1071-0

Downloads

Published

2021-01-21

How to Cite

Navarro, F. J. (2021). Sea-level rise: Which is the role of glaciers and polar ice sheets?. Metode Science Studies Journal, (11), 173–181. https://doi.org/10.7203/metode.11.16988
Metrics
Views/Downloads
  • Abstract
    1329
  • PDF
    487

Issue

Section

Oceans. The impact of global change on the sea

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.