The universal ancestor: An unfinished reconstruction

Authors

  • Arturo Becerra National Autonomous University of Mexico (UNAM).
  • Luis Delaye Centre for Research and Advanced Studies at the National Polytechnic Institute (CINVESTAV), Irapuato Campus (Mexico).

DOI:

https://doi.org/10.7203/metode.6.4981

Keywords:

universal phylogeny, LUCA, horizontal transference, early evolution, common ancestor

Abstract

The cenancestor is defined as the last common ancestor of every currently living being. Its nature has been inferred from the identification of homologous genes between archaea, bacteria, and eukaryotic lineages. These inferences indicate that the cenancestor had a relatively modern protein translation system, similar in complexity to that of a current cell. However, the key enzymes for the replication of genetic material and for cell membrane biosynthesis are not homologous in bacteria, archaea, and eukaryotes. Here, we briefly review the history of the concept of the last universal common ancestor and the different hypotheses proposed for its biology.

Downloads

Download data is not yet available.

Author Biographies

Arturo Becerra, National Autonomous University of Mexico (UNAM).

Professor at the Science School of the National Autonomous University of Mexico (UNAM). He is the author of several scientific publications on the evolution of early life on Earth.

Luis Delaye, Centre for Research and Advanced Studies at the National Polytechnic Institute (CINVESTAV), Irapuato Campus (Mexico).

Professor at the Centre for Research and Advanced Studies at the National Polytechnic Institute (CINVESTAV), Irapuato Campus (Mexico). He is the author of several scientific publications on the evolution of bacteria.

References

Agol, V. I. (2010). Which came first, the virus or the cell? Paleontological Journal, 44(7), 728–736. doi: 10.1134/S0031030110070038

Chatton, E. (1938). Titre et travaux scientifiques (1906–1937) de Edouard Chatton. Sète: Sottano.

Darwin, Ch. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

Fitch, W. M., & Upper, K. (1987). The phylogeny of tRNA sequences provides evidence of ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symposia on Quantitative Biology, 52, 759–767. doi: 10.1101/SQB.1987.052.01.085

Koonin, E. V., & Dolja, V. V. (2013). A virocentric perspective on the evolution of life. Current Opinion in Virology, 3, 546–557. doi: 10.1016/j.coviro.2013.06.008

Lazcano, A., Fox, G. E., & Oró, J. (1992). Life before DNA: The origin and evolution of early Archean cells. In R. P. Mortlock (Ed.), The evolution of metabolic function (pp. 237–295). Boca Raton: CRC Press.

Margulis, L. (1975). Symbiotic theory of the origin of eukaryotic organelles: Criteria for proof. Symposia of the Society for Experimental Biology, 29, 21–38.

Mirkin, B. G., Fenner, T. I., Galperin, M. Y., & Koonin, E. V. (2003). Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology, 3(2). doi: 10.1186/1471-2148-3-2

Peretó, J., López-García, P., & Moreira, D. (2004). Ancestral lipid biosynthesis and early membrane evolution. Trends in Biochemical Sciences, 29(9), 469–477. doi: 10.1016/j.tibs.2004.07.002

Poole, A. M., Horinouchi, N., Catchpole, R. J., Si, D., Hibi, M., Tanaka, K., & Ogawa, J. (2014). The case for an early biological origin of DNA. Journal of Molecular Evolution, 79(5–6), 204–212. doi: 10.1007/s00239-014-9656-6

Stanier, R. Y., & Van Niel, C. B. (1941). The main outlines of bacterial classification. Journal of Bacteriology, 42(4), 437–463.

Szathmáry, E. (2005). Life: In search of the simplest cell. Nature, 433, 469-470. doi: 10.1038/433469a

Whittaker, R. H. (1969). New concepts of kingdoms of organisms. Science, 163, 150–160. doi: 10.1126/science.163.3863.150

Woese, C. R., & Fox, G. E. (1977a). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74, 5088–5090. doi: 10.1073/pnas.74.11.5088

Woese, C. R., & Fox, G. E. (1977b). The concept of cellular evolution. Journal of Molecular Evolution, 10, 1–6. doi: 10.1007/BF01796132

Woese, C. R. (1998). The universal ancestor. Proceedings of the National Academy of Sciences, 95, 6854–6859.

Downloads

Published

2016-04-15

How to Cite

Becerra, A., & Delaye, L. (2016). The universal ancestor: An unfinished reconstruction. Metode Science Studies Journal, (6), 145–149. https://doi.org/10.7203/metode.6.4981
Metrics
Views/Downloads
  • Abstract
    1354
  • PDF
    893

Issue

Section

On the origin of life. An incomplete scientific story

Metrics

Similar Articles

> >> 

You may also start an advanced similarity search for this article.