Stress patterns in conical teeth of reptiles and mammals: experimental and finite element analyses

Authors

  • Rahul Srivastava Lucknow Univesrity
  • Adeel Ahmad
  • V. Rama Rao Osmania University

DOI:

https://doi.org/10.7203/sjp.23823

Keywords:

Conical teeth, reptiles, Mammals, SEM, FEA, UTM, tensile stresses, reinforcement.

Abstract

A 3-Dimensional Finite Element Analysis (FEA) of conical teeth of reptiles and some mammals, suggests that under a vertical loading condition along the longer axis of tooth, horizontal tensile stresses are produced. In dental enamel, these stresses are distributed mainly in two horizontal directions, i.e. in X direction and in Z direction. The empirical observation of stresses possibly leading to the vertical failure of the teeth was obtained through Universal Testing Machine (UTM) using recent unicuspid teeth of crocodiles, varanus and canines of pig, cat and dog. The horizontal development of Hunter Schreger Bands (HSBs) has been observed in the enamel of canines of herbivore and carnivore mammals, which seems to be an effective structural strategy to counter splitting of tooth enamel under vertical loading. In contrast, the unicuspid teeth of reptiles lack the HSBs, and are more susceptible to failure. However, as reptilian teeth are continuously replaced, the damage is negligible.

Downloads

Download data is not yet available.

Author Biography

Rahul Srivastava, Lucknow Univesrity

Osmania University

Downloads

Published

2022-02-24

How to Cite

Srivastava, R., Ahmad, A., & Rao, V. R. (2022). Stress patterns in conical teeth of reptiles and mammals: experimental and finite element analyses. Spanish Journal of Palaeontology, 14(2), 269–277. https://doi.org/10.7203/sjp.23823
Metrics
Views/Downloads
  • Abstract
    222
  • PDF (Español)
    118

Metrics

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.