Chemistry for next-generation diagnostics

Key factors in the development of medical biosensors

Authors

  • Maria Soler Catalan Institute of Nanoscience and Nanotechnology (ICN2) https://orcid.org/0000-0001-7232-2277
  • Laura M. Lechuga Catalan Institute of Nanoscience and Nanotechnology (ICN2)

DOI:

https://doi.org/10.7203/metode.15.27225

Keywords:

sensor functionalization, label-free biosensors, surface chemistry, nanotechnology, clinical diagnosis

Abstract

Biosensors have been profiled as potential next-generation diagnostic technologies, offering excellent clinical performance, wide versatility, and integration in miniaturized devices for on-site and portable analysis. But the sensor biofunctionalization, the way bioreceptors are immobilized on the sensor chip, is still an unresolved challenge that demands for specific research in surface chemistry strategies and the use of novel nanomaterials. We provide a brief overview of the key factors driving the improvement of medical biosensors, with a special focus on the current limitations in sensor surface modification and the direct analysis of human samples. We conclude the successful implementation of cutting-edge diagnostic biosensors will only be possible through the collaborative synergy of different sciences, including physics, biology, engineering, and certainly chemistry.

Downloads

Download data is not yet available.

Author Biographies

Maria Soler, Catalan Institute of Nanoscience and Nanotechnology (ICN2)

Ramón y Cajal senior researcher at the Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN (Spain).

Laura M. Lechuga, Catalan Institute of Nanoscience and Nanotechnology (ICN2)

CSIC full professor and group leader of the Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN (Spain).

References

Altug, H., Oh, S. H., Maier, S. A., & Homola, J. (2022). Advances and applications of nanophotonic biosensors. Nature Nanotechnology, 17(1), 5–16. https://doi.org/10.1038/s41565-021-01045-5

Avci, C., Imaz, I., Carné-Sánchez, A., Pariente, J. A., Tasios, N., Pérez-Carvajal, J., Alonso, M. I., Blanco, A., Dijkstra, M., López, C., & Maspoch, D. (2017). Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chemistry, 10(1), 78–84. https://doi.org/10.1038/nchem.2875

Cesewski, E., & Johnson, B. N. (2020). Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 159, 112214. https://doi.org/10.1016/J.BIOS.2020.112214

Grigorenko, A. N., Polini, M., & Novoselov, K. S. (2012). Graphene plasmonics. Nature Photonics, 6(11), 749–758). https://doi.org/10.1038/nphoton.2012.262

Jing, Y., Chang, S. J., Chen, C. J., & Liu, J.-T. (2022). Review—Glucose monitoring sensors: History, principle, and challenges. Journal of The Electrochemical Society, 169(5), 057514. https://doi.org/10.1149/1945-7111/AC6980

Kim, J. H., Suh, Y. J., Park, D., Yim, H., Kim, H., Kim, H. J., Yoon, D. S., & Hwang, K. S. (2021). Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomedical Engineering Letters, 11(4), 309–334. https://doi.org/10.1007/S13534-021-00204-W

Lopez, G. A., Estevez, M. C., Soler, M., & Lechuga, L. M. (2017). Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration. Nanophotonics, 6(1), 123–136. https://doi.org/10.1515/nanoph-2016-0101

Moreno, C., Vilas-Varela, M., Kretz, B., Garcia-Lekue, A., Costache, M. V., Paradinas, M., Panighel, M., Ceballos, G., Valenzuela, S. O., Peña, D., & Mugarza, A. (2018). Bottom-up synthesis of multifunctional nanoporous graphene. Science, 360(6385), 199–203. https://doi.org/10.1126/science.aar2009

Sadighbayan, D., Sadighbayan, K., Tohid-kia, M. R., Khosroushahi, A. Y., & Hasanzadeh, M. (2019). Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC Trends in Analytical Chemistry, 118, 73–88. https://doi.org/10.1016/J.TRAC.2019.05.014

Saha, T., Del Caño, R., Mahato, K., De la Paz, E., Chen, C., Ding, S., Yin, L., & Wang, J. (2023). Wearable electrochemical glucose sensors in diabetes management: A comprehensive review. Chemical Reviews, 123(12), 7854–7889. https://doi.org/10.1021/acs.chemrev.3C00078

Soler, M., Huertas, C. S., & Lechuga, L. M. (2019). Label-free plasmonic biosensors for point-of-care diagnostics: a review. Expert Review of Molecular Diagnostics, 19(1), 71–81. https://doi.org/10.1080/14737159.2019.1554435

Soler, M., & Lechuga, L. M. (2021). Principles, technologies, and applications of plasmonic biosensors. Journal of Applied Physics, 129(11), 111102. https://doi.org/10.1063/5.0042811

Soler, M., & Lechuga, L. M. (2022). Biochemistry strategies for label-free optical sensor biofunctionalization: Advances towards real applicability. Analytical and Bioanalytical Chemistry, 414, 5071–5085. https://doi.org/10.1007/S00216-021-03751-4

Wang, J., Imaz, I., & Maspoch, D. (2022). Metal−organic frameworks: Why make them small? Small Structures, 3(1), 2100126. https://doi.org/10.1002/SSTR.202100126

Yoo, S. M., & Lee, S. Y. (2016). Optical biosensors for the detection of pathogenic microorganisms. Trends in Biotechnology, 34(1), 7–25. https://doi.org/10.1016/j.tibtech.2015.09.012

Downloads

Published

2024-07-04

How to Cite

Soler, M., & Lechuga, L. M. (2024). Chemistry for next-generation diagnostics: Key factors in the development of medical biosensors. Metode Science Studies Journal, (15). https://doi.org/10.7203/metode.15.27225
Metrics
Views/Downloads
  • Abstract
    397
  • PDF
    28

Issue

Section

Everything is chemistry: Challenges for a sustainable future

Metrics

Similar Articles

<< < > >> 

You may also start an advanced similarity search for this article.