Perovskite solar cells

Towards the net zero scenario

Autores/as

DOI:

https://doi.org/10.7203/metode.15.28390

Palabras clave:

perovskite solar cells, metal halide perovskites, solar photovoltaics, perovskite-silicon tandem cells, net zero emissions

Resumen

At present, there is an urgent need to reduce greenhouse gas emissions to mitigate the climate change that threatens humanity and our planet’s ecosystems. A way to achieve this is by increasing renewable energy production, where solar photovoltaic plays a key role. However, the current commercial crystalline silicon photovoltaic technology might not be enough to achieve the required targets. In this work, we describe the latest advances of an emerging photovoltaic technology known as perovskites. In just ten years of development perovskite solar cells have matched the performance of current commercial crystalline silicon. Here, we outline how to scale and improve the stability of perovskite solar cells as well as examples of applications such as their integration with silicon solar cells, semitransparent solar cells, and their use in outer space.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Daniel Tordera, Instituto de Ciencia Molecular (ICMol)

Assistant Professor at the Department of Physical Chemistry and the Molecular Science Institute (ICMol) of the University of Valencia (Spain).

Henk J. Bolink, Instituto de Ciencia Molecular (ICMol)

Professor at the Department of Inorganic Chemistry and the Molecular Science Institute (ICMol) of the University of Valencia (Spain). Principal investigator of the ERC Advanced Grant Project «Hetero-structures for Efficent Luminescent Devices» (HELD).

Citas

Adinolfi, V., Peng, W., Walters, G., Bakr, O. M., & Sargent, E. H. (2018). The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Advanced Materials, 30(1), 1700764. https://doi.org/https://doi.org/10.1002/adma.201700764

Ávila, J., Momblona, C., Boix, P. P., Sessolo, M., & Bolink, H. J. (2017). Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production? Joule, 1(3), 431–442. https://doi.org/https://doi.org/10.1016/j.joule.2017.07.014

Basumatary, P., & Agarwal, P. (2022). A short review on progress in perovskite solar cells. Materials Research Bulletin, 149, 111700. https://doi.org/https://doi.org/10.1016/j.materresbull.2021.111700

Fakharuddin, A., Gangishetty, M. K., Abdi-Jalebi, M., Chin, S.-H., bin Mohd Yusoff, A. R., Congreve, D. N., Tress, W., Deschler, F., Vasilopoulou, M., & Bolink, H. J. (2022). Perovskite light-emitting diodes. Nature Electronics, 5(4), 203–216. https://doi.org/10.1038/s41928-022-00745-7

Herz, L. M. (2017). Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters, 2(7), 1539–1548. https://doi.org/10.1021/acsenergylett.7b00276

Lee, J., Lee, K., Kim, K., & Park, N.-G. (2022). Vacuum-Processed Perovskite Solar Cells: Materials and Methods. Solar RRL, n/a(n/a), 2200623. https://doi.org/https://doi.org/10.1002/solr.202200623

Liang, Z., Zhang, Y., Xu, H., Chen, W., Liu, B., Zhang, J., Zhang, H., Wang, Z., Kang, D.-H., Zeng, J., Gao, X., Wang, Q., Hu, H., Zhou, H., Cai, X., Tian, X., Reiss, P., Xu, B., Kirchartz, T., … Pan, X. (2023). Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 624(7992), 557–563. https://doi.org/10.1038/s41586-023-06784-0

Longi. (2023). LONGi sets a new world record of 33.9% for the efficiency of crystalline silicon-perovskite tandem solar cells. https://www.longi.com/en/news/new-world-record-for-the-efficiency-of-crystalline-silicon-perovskite-tandem-solar-cells/

Malinkiewicz, O., Yella, A., Lee, Y. H., Espallargas, G. M., Graetzel, M., Nazeeruddin, M. K., & Bolink, H. J. (2014). Perovskite solar cells employing organic charge-transport layers. Nature Photonics, 8(2), 128–132. https://doi.org/10.1038/nphoton.2013.341

Manser, J. S., Christians, J. A., & Kamat, P. V. (2016). Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 116(21), 12956–13008. https://doi.org/10.1021/acs.chemrev.6b00136

Messmer, C., Goraya, B. S., Nold, S., Schulze, P. S. C., Sittinger, V., Schön, J., Goldschmidt, J. C., Bivour, M., Glunz, S. W., & Hermle, M. (2021). The race for the best silicon bottom cell: Efficiency and cost evaluation of perovskite–silicon tandem solar cells. Progress in Photovoltaics: Research and Applications, 29(7), 744–759. https://doi.org/https://doi.org/10.1002/pip.3372

Paliwal, A., Zanoni, K. P. S., Roldán-Carmona, C., Hernández-Fenollosa, M. A., & Bolink, H. J. (2023). Fully vacuum-deposited perovskite solar cells in substrate configuration. Matter, 6(10), 3499–3508. https://doi.org/https://doi.org/10.1016/j.matt.2023.07.011

Raza, E., & Ahmad, Z. (2022). Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Reports, 8, 5820–5851. https://doi.org/https://doi.org/10.1016/j.egyr.2022.04.028

Rodkey, N., Gomar-Fernández, I., Ventosinos, F., Roldan-Carmona, C., Koster, L. J. A., & Bolink, H. J. (2024). Close-Space Sublimation as a Scalable Method for Perovskite Solar Cells. ACS Energy Letters, 927–933. https://doi.org/10.1021/acsenergylett.3c02794

Zhang, H., Ji, X., Yao, H., Fan, Q., Yu, B., & Li, J. (2022). Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 233, 421–434. https://doi.org/https://doi.org/10.1016/j.solener.2022.01.060

Descargas

Publicado

28-11-2024

Cómo citar

Tordera, D., & Bolink, H. J. (2024). Perovskite solar cells: Towards the net zero scenario. Metode Science Studies Journal, (15). https://doi.org/10.7203/metode.15.28390
Metrics
Vistas/Descargas
  • Resumen
    113
  • PDF
    55

Número

Sección

Todo es química. Retos para un futuro sostenible

Métrica

Artículos similares

> >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.