La conjetura de Poincaré: Problema resuelto tras un siglo de nuevas ideas y continuo trabajo
DOI:
https://doi.org/10.7203/metode.0.9265Palabras clave:
topología, esfera, grupo fundamental, geometría riemanniana, flujo de RicciResumen
La conjetura de Poincaré es un problema topológico, establecido en 1904 por el matemático francés Henri Poincaré, que caracteriza de una manera muy sencilla la esfera tridimensional. Se trata de utilizar únicamente el primer invariante de topología algebraica –el grupo fundamental– también definido y estudiado por Poincaré. La conjetura implica que si un espacio no tiene agujeros esenciales es que se trata de la esfera. Este problema fue resuelto entre 2002 y 2003 por Grigori Perelman, directamente y como consecuencia de su demostración de la conjetura de geometrización de Thurston, que culminaba así el camino marcado por Richard Hamilton.
Descargas
Citas
Hamilton, R. (1982). Three-manifolds with positive Ricci curvature. Journal of Differential Geometry, 17(2), 255–306.
Jaco, W., & Shalen, P. B. (1978). A new decomposition theorem for irreducible sufficiently-large 3-manifolds. In J. Milgram (Ed.), Algebraic and geometric topology (pp. 71–84). Providence: American Mathematical Society. doi: 10.1090/pspum/032.2
Johannson, K. (1979). Homotopy equivalences of 3-manifolds with boundaries. Berlin: Springer-Verlag.
Kneser, H. (1929). Geschlossene Flächen in dreidimesnionalen Mannigfaltigkeiten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 38, 248–260.
Milnor, J. (1962). A unique decomposition theorem for 3-manifolds. American Journal of Mathematics, 84(1), 1–7.
O’Shea, D. (2007). The Poincaré conjecture: In search of the shape of the universe. New York: Walker Publishing Company.
Perelman, G. (2002). The entropy formula for the Ricci flow and its geometric applications. ArXiv. Retrieved from https://arxiv.org/abs/math/0211159
Perelman, G. (2003a). Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. ArXiv. Retrieved from https://arxiv.org/abs/math/0307245
Perelman, G. (2003b). Ricci flow with surgery on three-manifolds. ArXiv. Retrieved from https://arxiv.org/abs/math/0303109
Poincaré, H. (1904). Cinquième complément à l’analysis situs. Rendiconti del Circolo Matematico di Palermo, 18(1), 45–110.
Scott, P. (1983). The geometries of 3-manifolds. Bulletin of the London Mathematical Society, 15(5), 401–487
Descargas
Publicado
Cómo citar
-
Resumen3397
-
PDF 1418
Número
Sección
Licencia
Todos los documentos incluidos en OJS son de acceso libre y propiedad de sus autores.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a Metode Science Studies Journal el derecho a la primera publicación del trabajo, licenciado bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional, que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y citando la publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente a través de páginas personales e institucionales (repositorios institucionales, páginas web personales o perfiles a redes profesionales o académicas) una vez publicado el trabajo.