Analíticas de aprendizaje: evaluación retrospectiva a nivel de curso
DOI:
https://doi.org/10.7203/realia.31.25526Palabras clave:
analíticas de aprendizaje, compromiso del estudiante, rendimiento, retención, educación superiorResumen
El concepto compromiso del estudiante es controvertido. El empleo de perfiles analíticos del alumnado (PAA) para medir el compromiso del estudiante en su aprendizaje se complica tanto por la falta de acuerdo sobre qué es lo que se está midiendo realmente como por la incomodidad o falta de confianza en torno a lo que los datos cotejados indican de manera creíble. Este reto se convierte en algo más complejo por la escasa disponibilidad y la cuestionable precisión y fiabilidad de los datos. El objetivo de los perfiles analíticos del alumnado es recopilar y compartir datos de participación inicial, que puedan utilizarse de forma predictiva para mejorar la experiencia y resul- tados posteriores. Sin embargo, la mayoría de los PAA recogidos por las instituciones de educación superior son descriptivos y, por tanto, de limitada utilidad. Este artículo explora la credibilidad de dichos PAA cuando se utilizan a nivel de curso y son exclusivamente descriptivos. Este estudio de caso a pequeña escala ofrece un análisis de datos exhaustivos recopilados dentro y fuera de los PAA para una cohorte de nivel 4 a lo largo del curso académico 2019-20. El trabajo también emplea datos sobre la finalización de los estudios de esa cohorte, lo que permite realizar un análisis retrospectivo que proporciona más información sobre la utilidad de esos PAA en una etapa anterior del itinerario de este alumnado. Teniendo en cuenta los resultados reales de estos estudiantes que comenzaron en 2019, aplicamos su comprensión sobre qué significa compromiso, para explicar sus propios indi- cadores de interacción y acciones que podrían facilitar un compromiso constructivo. Se observaron correlaciones significativas entre el uso de los recursos electrónicos y los resultados de los estudian- tes, y se descubrió que los indicadores de riesgo más significativos eran las prórrogas, los suspensos y la no entrega de trabajos en el primer semestre del nivel 4, así como unas notas medias inferiores al 39% al final del nivel 4. Entre las recomendaciones del estudio se incluye el fomentar un acceso mejor y más seguro a los contenidos de la bibliografía electrónica y ofrecer feedback al alumnado que muestra desde el primer momento indicadores de riesgo.
Descargas
Citas
Agudo-Peregrina, A., Iglesias-Pradas, S., Conde-Gonzalez, M., & Hernandez-Garcia, A. (2014). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior, 31, 542–550. https://doi.org/10.1016/ j.chb.2013.05.031
Bassett-Dubsky, R. (2020). Student engagements project blog. [Blog post]. Retrieved from https://mypad.northampton.ac.uk/rdubsk/
Bassett-Dubsky, R. (2021). How has Covid-19 shifted how we support, recognise and measure student engagement? In S. Studente, S. Ellis, & B. Desai (Eds.), The Impact of COVID-19 on teaching and learning in Higher Education (pp. 151–173). Nova Science Publishers.
Beetham, H., Collier, A., Czerniewicz, L., Lamb, B., Lin, Y., Ross, J., … Wilson, A. (2022). Surveillance Practices, Risks and Responses in the Post Pandemic University. Digital Culture & Education, 14(1), 16–37. Retrieved from https:// www.digitalcultureandeducation.com/volume-141-papers/beetham-2022
Blundell, R., Costa-Dias, M., Cribb, J., Joyce, R., Waters, T., Wernham, T., & Xu, X. (2022). Inequality and the Covid-19 crisis in the United Kingdom. Annual review of Economics, 14, 607–636. https://doi.org/10.1146/annurev-economics-051520-030252
Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter, O., & Kerres, M. (2020). Mapping research in student engagement and educational technology in higher education: a systematic evidence map. International Journal of Educational Technology in Higher Education, 17 (2). https://doi.org/10.1186/s41239-019-0176-8
Braun, V., & Clarke, V. (2022). Thematic Analysis: A practical guide. London: Sage.
Broughan, C., & Prinsloo, P. (2020). ‘(Re)centring students in learning analytics: in conversation with Paulo Freire. Assessment & Evaluation in Higher Education, 45(4), 617–628. https://doi.org/10.1080/02602938.2019.1679716
Bunce, L., King, N., Saran, S., & Talib, N. (2021). Experiences of black and minority ethnic (BME) students in higher education: applying self-determination theory to understand the BME attainment gap. Studies in Higher Education, 46(3), 534–547. https://doi.org/ 10.1080/03075079.2019.1643305
De Freitas, S., Gibson, D., Plessis, C. D., Halloran, P., Williams, E., Ambrose, M., … Arnab, S. (2015). Foundations of dynamic learning analytics: Using university student data to increase retention. British Journal of Educational Technology, 46(6), 1175–1188. https:// doi.org/10.1111/bjet.12212
Dommett, E., Gardner, B., & Van Tilburg, W. (2019). Staff and student views of lecture capture: a qualitative study. International Journal of Educational Technology in Higher Education, 16(23), 16–16. https://doi.org/10.1186/s41239-019-0153-2
Dyment, J., Stone, C., & Milthorpe, N. (2020). Beyond busy work: rethinking the measurement of online student engagement.Higher Education Research & Development, 39(7), 1440–1453. https://doi.org/10.1080/07294360.2020.1732879
Gravett, K., Kinchin, I., & Winstone, N. (2020). Frailty in transition? Troubling the norms, boundaries and limitations of transition theory and practice. Higher Education Research & Development, 39(6), 1169–1185.https://doi.org/10.1080/07294360.2020.1721442
GSU. (2019). Leading with predictive analytics . Retrieved from https://success.gsu.edu/ approach/
Hanover-Research. (2016, November). Learning Analytics for tracking student progress.Retrieved February 2023, 22, from https://www.imperial.edu/docs/research-planning/ 7932-learning-analytics-for-tracking-student-progress/file
Herodotou, C., Rienties, B., Boroowa, A., & Zdráhal, Z. (2019). A large-scale implementation of predictive learning analytics in higher education: the teachers’ role and perspective. Educational Technology Research and Development, 67 (2). http://dx.doi.org/10.1007/ s11423-019-09685-0
HESA. (2023, 01 31). Who’s studying in HE?: Personal characteristics . Retrieved from https:// www.hesa.ac.uk/data-and-analysis/students/whos-in-he/characteristics
Kika, C., Duan, Y., & Cao, G. (2016). Understanding the use and impact of learner analytics on Student Experience management in the UK Higher Education sector. In and others (Ed.), PACIS 2016 proceedings (pp. 54–54). Pacific Asia Conference on Information Systems. Retrieved from http://hdl.handle.net/10547/624450
Korhonen, V. (2012). Towards Inclusive Higher Education? - Outlining a Student-centred Counselling Framework for Strengthening Student Engagement. In S. Stolz & P. Gonon (Eds.), Challenges and Reforms in Vocational Education - Aspects of Inclusion and Exclusion (pp. 297–320). Bern: Peter Lang.
Korhonen, V., Mattsson, M., Inkinen, M., & Toom, A. (2019). Understanding the multidimensional nature of Student Engagement during the first year of Higher Education. Frontiers in Psychology, 10(1056), 1–15. https://doi.org/10.3389/fpsyg.2019.01056
Mathrani, A., Susnjak, T., Ramaswami, G., & Barczak, A. (2021). Perspectives on the challenges of generalisability, transparency and ethics in predictive learning analytics. Computers and Education Open, 2. https://doi.org/10.1016/j.caeo.2021.100060
Morgan, M. (2019, November). Presentation to SEDA conference.
Ofs. (2022). OfS sets news expectations for Student Outcomes . Retrieved from https:// www.officeforstudents.org.uk/news-blog-and-events/press-and-media/ofs-sets-new-expectations-for-student-outcomes/
Oldfield, J., Rodwell, J., Curry, L., & Marks, G. (2018). Psychological and demographic predictors of undergraduate non-attendance at university lectures and seminars. Journal of Further and Higher Education, 42(4), 509–523. https://doi.org/10.1080/ 0309877X.2017.1301404
Parkes, S., Benkwitz, A., Bardy, H., Myler, K., & Peters, J. (2020). Being more human: rooting learning analytics through resistance and reconnection with the values of higher education. Higher Education Research and Development, 39(1), 113–126. https://doi.org/10.1080/07294360.2019.1677569
Robertshaw, M. B., & Asher, A. (2019). Unethical Numbers? A Meta-Analysis of Library Learning Analytics Studies. Library Trends, 68(1), 76–101. https://doi.org/10.1353/ lib.2019.0031
Summers, R., Higson, H., & Moores, E. (2020). Measures of engagement in the first three weeks of higher education predict subsequent activity and attainment in first year undergraduate students: a UK case study. Assessment & Evaluation in Higher Education, 46(5), 821–836. https://doi.org/10.1080/02602938.2020.1822282
Susnjak, T., Suganya-Ramaswami, G., & Mathrani, A. (2022). Learning analytics dashboard: a tool for providing actionable insights to learners. International Journal of Educational Technology in Higher Education, 19(12). https://doi.org/10.1186/s41239-021-00313-7
Thorpe, A., Lukes, R., Bever, D., & He, Y. (2016). The Impact of the Academic Library on Student Success: Connecting the Dots. Portal: Libraries and the Academy, 16(2), 373– 392. https://doi.org/10.1353/pla.2016.0027
Tobbell, J., Burton, R., Gaynor, A., Golding, B., Greenhough, K., Rhodes, C., & White, S. (2021). Inclusion in higher education: an exploration of the subjective experiences of students. Journal of Further and Higher Education, 45(2), 284–295. https://doi.org/ 10.1080/0309877X.2020.1753180
Venn, E., Park, J., Palle-Anderson, L., & Hejmadi, M. (2020). How do learning technologies impact on undergraduates’ emotional and cognitive engagement with their learning? Teaching in Higher Education, 28(4), 822–839. https://doi.org/10.1080/13562517.2020.1863349
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110. https:// doi.org/10.1016/j.chb.2018.07.027
Zepke, N. (2018). Student engagement in neo-liberal times: what is missing? Higher Education Research & Development, 37 (2), 433–446. https://doi.org/10.1080/07294360.2017.1370440
Descargas
Publicado
Cómo citar
-
Resumen951
-
PDF 461
-
EPUB 283
-
HTML 538
Número
Sección
Licencia
Los artículos publicados en esta revista están sujetos a los siguientes términos:
1. La Universitat de València es la editora de Research in Education and Learning Innovation Archives (REALIA) y conserva los derechos patrimoniales (copyright) de lo publicado en la revista, si bien permite y propicia la reutilización de las mismas bajo una licencia copyleft.
2. Los textos publicados en esta revista están –si no se indica lo contrario– bajo una licencia Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0).
La revista anima a sus autores a difundir y dar mayor visibilidad a las investigaciones que publique en Research in Education and Learning Innovation Archives (REALIA) por lo que le informa de que al publicar con nosotros:
- El autor conserva los derechos de autor aunque cede a la revista el derecho de la primera publicación
- El trabajo se publica con una licencia Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0).
- Auto-archivo: Se autoriza y recomienda a los autores difundir su trabajo en Internet en repositorios institucionales, y otras páginas personales o institucionales, para favorecer su visibilidad y citación, siempre indicando claramente que el trabajo se publicó por primera vez en esta revista